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Abstract—This paper is dedicated to an optimization problem. Let A,B ⊂ R
n be compact

convex sets. Consider the minimal number t0 > 0 such that t0B covers A after a shift to a
vector x0 ∈ R

n. The goal is to find t0 and x0. In the special case of B being a unit ball centered
at zero, x0 and t0 are known as the Chebyshev center and the Chebyshev radius of A. This
paper focuses on the case in which A and B are defined with their black-box support functions.
An algorithm for solving such problems efficiently is suggested. The algorithm has a superlinear
convergence rate, and it can solve hundred-dimensional test problems in a reasonable time, but
some additional conditions on A and B are required to guarantee the presence of convergence.
Additionally, the behavior of the algorithm for a simple special case is investigated, which leads
to a number of theoretical results. Perturbations of this special case are also studied.
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1. INTRODUCTION

Let A and B be compact convex sets in R
n. Let t0 ∈ R be such a minimal positive number that

some shifted copy of t0B covers A,

t0 = min{t | ∃x0 ∈ R
n : x0 + t0B ⊃ A}. (1)

Figure 1 shows an example of the optimal configuration of A and B.

One may notice that the same problem could be stated if A is not convex. Indeed, if in such a
problem A is replaced with its convex hull conv(A), the optimal x0 and t0 remain the same. So,
we can assume that A is convex without loss of generality.

The problem of finding the Chebyshev center of a set is a special case of the problem described
above: if B = B1(0) = {y ∈ R

n | ‖y‖ 6 1}, then x0 is the Chebyshev center of A. It is known that
it can be solved fast if A is finite [4]. But in general, Chebyshev-center-like problems turn out to
be computationally challenging tasks, which received some attention in recent years. For example,
finding the Chebyshev center of an intersection of balls is NP-hard [5] (2021). Even calculating
the Chebyshev center of an intersection of two ellipsoids is a substantive problem [16] (2020).
Chebyshev center draws such attention for a reason: it has a number of real-life applications.
It can be helpful in Long-Term Hydrothermal Scheduling problems [17] (2022), regression problems
with noisy terms [18] (2007), identification of linear dynamic systems with noisy parts [19] (2012),
cybersecurity [20] (2023), [22] (2020) and robotics [21] (2021).

Let us consider such problems that the optimal x0 is unique.

598



AN ALGORITHM FOR FINDING THE GENERALIZED CHEBYSHEV CENTER 599

x0 + t0B

A

Fig. 1. The optimal configuration of A and B.

The goal is to develop an algorithm that solves the problem efficiently, if the sets A and B are
defined with their support functions. Let us remind the reader that for a given set M ⊂ R

n the
value of the support function of M at the point p ∈ R

n is defined as follows:

hM (p) = sup{(p, y) | y ∈ M}.

In this notation,

A = {y ∈ R
n | (y, p) 6 hA(p) ∀p ∈ Sn−1}, (2)

B = {y ∈ R
n | (y, p) 6 hB(p) ∀p ∈ Sn−1}, (3)

where Sn−1 = {y ∈ R
n | ‖y‖ = 1} is the standard unit sphere. Then, the problem (1) can be re-

stated:

t0 = min{t | ∃x0 ∈ R
n : (x, p) + t · hB(p) > hA(p) ∀p ∈ Sn−1}. (4)

In some sense, it is a linear programming problem with an infinite number of restrictions. Indeed,
one minimizes a linear functional (w, c) = t, w = (t, x1, . . . xn)

T ∈ R
n+1, c = (1, 0, . . . , 0)T , subject

to constraints (w, bp) 6 hA(p), where bp = (hB(p), p1, . . . , pn)
T , that must hold for every p of unit

norm.

One known approach to the problem is described in [1]. It picks a finite number of linear
restrictions corresponding to a grid on the unit sphere and solves a linear programming problem
subject to those restrictions. The disadvantage of this approach is that a reasonably fine grid
on a high-dimensional unit sphere has too many elements. In practice, the computations become
unbearably hard for n > 4. So, developing an algorithm that can solve the stated problem in high
dimensions is a relevant research problem.

Before describing the algorithm, it makes sense to remind the reader that for a strictly convex
compact set M ⊂ R

n its support function has the following gradient:

∇hM (p) = argmax
y∈M

(p, y). (5)

Obviously, (p, y) = hM (p). If M is convex, but not strictly convex, one can consider the subdiffer-
ential ∂hM (p):

∂hM (p) = H(p) ∩M, (6)

whereH(p) = {y ∈ R
n|(p, y) = hM (p)}. The subdifferential of a convex function f : Rn → R at x0 is

the set of all vectors v ∈ R
n such that f(x)− f(x0) > (v, x− x0) for all x ∈ R

n. Such vectors v are
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called subgradients of f at x0. Easy to see that if M is strictly convex, then the subdifferential of
its support function is a one-element set at every point:

∂hM (p) = H(p) ∩M = {y ∈ M |(p, y) = hM (p)} =

{
argmax

y∈M
(p, y)

}
= {∇hM (p)}. (7)

Let us denote the convex hull of a set M as conv(M), and the r-strongly convex hull of M as
strconvr(M). A set is called r-strongly convex if it can be represented as an intersection of balls
of radius r. Suppose M ⊂ R

n can be enclosed in a ball of radius r. Then, strconvr(M) is the
intersection of all the balls of radius r that contain M (just like the convex hull of M is the
intersection of all the half spaces that contain M).

2. THE ALGORITHM AND THEORETICAL RESULTS

For the algorithm described below to converge, A and B will have to satisfy a condition: the
function f : Sn−1 → R, f(p) = (x0, p) + t0hB(p)− hA(p) must have exactly n + 1 local minimums
p01, . . . , p

0
n+1, and the convex hull of the set of those minimums have to contain zero in its inte-

rior: 0 ∈ int(conv(p01, . . . , p
0
n+1)). Informally, the conditions tell us that the linear programming

problem (4) has exactly n+ 1 active restrictions

Let p1, . . . , pn+1 be vectors of unit length. We will use the following notation:

ai = hA(pi), a = (a1, . . . , an+1)
T , (8)

bi = hB(pi), b = (b1, . . . , bn+1)
T , (9)

Ma =




a1 (p1)1 . . . (p1)n
a2 (p2)1 . . . (p2)n
...

...
. . .

...
an+1 (pn+1)1 . . . (pn+1)n



, (10)

Mb =




b1 (p1)1 . . . (p1)n
b2 (p2)1 . . . (p2)n
...

...
. . .

...
bn+1 (pn+1)1 . . . (pn+1)n



. (11)

The following lemma is obvious:

Lemma 1. If 0 ∈ conv({p1, . . . , pn+1}), then for t, x such that (pj, x) + thB(pj) > hA(pj), and

t is minimal, the following equality holds:

Mb




t

x1
...

xn




= a. (12)

Corollary 1. Using Cramer’s rule,

t =
detMa

detMb
. (13)

Algorithm 1. Start with points p1, . . . , pn+1 ∈ Sn−1 equal to the vertices of a randomly rotated
regular simplex. At each iteration, do the following:

1) Find the solution of the system of linear equations (12), t, x.
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2) Substitute each pi with p′i, which is a local minimum of the function ft,x(p) = (x, p)+thB(p)−
hA(p) found with a gradient descent starting from pi. The gradient of ft,x can be computed
as follows:

∇ft,x(p) = x+ t argmax
y∈B

(p, y)− argmax
y∈A

(p, y). (14)

In case there are several global maximums of (p, y), choose an arbitrary one.
3) If there are no duplicates among p′i, set pi equal to p′i and finish this iteration.

Otherwise, remove duplicates from {p′i}. Let L be the set of the remaining minimums p′i.
Perform a gradient descent to a minimum of ft,x starting from a (uniformly) random point
of unit norm. If this minimum does not coincide with any element of L, add it to L. Do this
until L has n + 1 elements. Then, set pi equal to p′i and finish this iteration. If the number
of performed tries is greater than K, but we still have not found n + 1 distinct minimums,
restart the algorithm.

Stop when t and x change little enough over one iteration, or when the number of iterations
exceeds some limit.

Next, let us discuss the types of problems that can be solved with Algorithm 1.

Lemma 2. If B is strictly convex, then the function ft,x = (x, p) + thB(p)− hA(p), t ∈ R
+,

x ∈ R
n is differentiable at every minimum.

In particular, ft,x is differentiable at its minimums for the problems of finding the Chebyshev
center. The differentiability of ft,x at its minimums may also be helpful for the gradient descent to
converge properly. But, there are modifications of the gradient descent approach that can converge
to non-smooth minimums.

Theorem 1. Let p01, . . . , p
0
n+1 be the n+ 1 minimums of f(p) = (x0, p) + t0hB(p)− hA(p),

0 ∈ int(conv(p01, . . . , p
0
n+1)). Let B be strictly convex. Suppose that for any j ∈ {1 . . . n+ 1} for

any point p from some neighborhood of p0j ,

M‖p − p0j‖α > f(p) > µ‖p− p0j‖2, (15)

where M , µ, α are constants, 1 < α 6 2. Then, in some neighborhood of the solution, Algorithm 1

converges with order α. So, for t, x from some neighborhood of t0, x0,

‖(t′ − t0, x′1 − x01, . . . , x
′
n − x0n)

T ‖ 6 C‖(t− t0, x1 − x01, . . . , xn − x0n)
T ‖α, (16)

where t′, x′ is the state of the algorithm at the next iteration, if the current state is t, x.

Theorem 2. Let B = B1(0), A = conv((v1+C1)∪ . . .∪ (vn+1+Cn+1)), where vj ∈ R
n, Cj ⊂ R

n

are a strongly convex sets with the radius of strong convexity r < t0. Also, let f have at least n+1
zeroes. Then Algorithm 1 has quadratic convergence.

3. NUMERICAL EXPERIMENTS

The code that was used for the numerical experiments, as well as the figures, are publi-
cally available the GitHub page, https://github.com/Paul566/GraduateThesishttps://github.com/
Paul566/GraduateThesis. The solver class is in the file ‘GradientDescentSolver.py’.

Algorithm 1 was implemented and tested. During all the tests, 15 iterations were enough for the
algorithm to converge to machine precision. In all cases, the error of the final result was around
10−14–10−16. In most cases, 5–7 iterations were sufficient.

In all tests, the algorithm had the following parameters: maximal number of iterations: 20, gra-
dient descent learning rate: 1, the number of attempts to find n + 1 minimums: 10n, maximal
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Fig. 2. Error of t versus runtime, n = 100, results of 100 tests.

number of steps during gradient descent: 1000, the gradient descent terminates if f changes by
less than 10−10, two minimums are considered to be duplicates if the norm of their difference is
less than 10−6, maximal number of restarts: 1000. The standard gradient descent without any
modifications was used. For some test series, a plot of the error of the output versus runtime will
be presented. For the simulations, an ordinary laptop without GPU acceleration was used.

1) Let us begin with a very simple series of tests. Let B = B1(0), A be a random simplex that
contains the center of its circumscribed sphere. The results of the numerical experiments
for dimension 100 is presented in Fig. 2. Of course, solving such problems with Algorithm 1
makes no practical sense, this series of simulations was conducted for testing purposes.
As one can see, even hundred-dimensional problems are solved in a few seconds.
Finding the support functions in this setting is trivial:

hB(p) = ‖p‖, (17)

∇hB(p) =
p

‖p‖ , (18)

hA(p) = max
i

(vi, p), (19)

∇hA(p) = argmax
vi

(vi, p). (20)

2) Now let’s move on to a more complicated series of tests. Let the set A be a convex hull of
n+1 ellipsoids, and B be a ball. The results of the numerical experiments for dimension 100
is presented in Fig. 3.
In this case, it takes the algorithm tens of seconds to solve a 100-dimensional problem, which is
about an order of magnitude longer than in the previous series. However, in most cases, it still
took 5–7 iterations to converge. The increase in the runtime is due to the more complicated
computation of the support function of A. Indeed, for an ellipsoid E = v +MB1(0), where
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Fig. 3. Error of t versus runtime, n = 100.

M is a matrix, v ∈ R
n,

hE(p) = (p, v) + max
y∈MB1(0)

(p, y) = (p, v) + max
u∈B1(0)

(p,Mu) (21)

= (p, v) + max
u∈B1(0)

(MT p, u) = (p, v) + ‖MT p‖, (22)

∇hE(p) = v +M
MT p

‖MT p‖ = v +
MMT p

‖MT p‖ . (23)

If A = conv(E1∪ . . .∪En+1), Ej = vj +MjB1(0), one can compute the support function of A
in the following way:

hA(p) = max
i

hEi
(p). (24)

Then, the gradient of hA is computed as a gradient of hEk
, where Ek is the ellipsoid with the

greatest hEk
(p).

Thus, calculating the support function of the convex hull on n + 1 ellipsoids is significantly
more computationally expensive.

4. SPECIAL CASE OF A SIMPLEX IN A BALL

Throughout this section, let B be a ball, and A be a simplex that contains the center of its
circumscribed sphere. Clearly, in this case, x0 + t0∂B coincides with the circumsphere of A. It is
enough to consider the case x0 = 0, t0 = 1, B = B1(0), so the above equalities will be assumed
throughout this chapter.

Lemma 3. The minimums of ft,x depend only on x and do not depend on t.

Definition 1. The set F ⊂ R
n is the closure of the set of such x ∈ R

n, that ft,x = (x, p)+
thB(p)− hA(p) has n+ 1 minimums on a unit sphere.
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Since for x ∈ F Algorithm 1 has a chance to converge (otherwise it will not be able to find n+1
minimums of ft,x), we will study some properties of F , especially bounds on its volume.

Lemma 4. If n = 2, then F = conv(A ∪ −A), V ol(F ) = 2V ol(A).

Let v1, . . . , vn+1 be the vertices of A. The following lemma describes F in terms of v1, . . . , vn+1.

Lemma 5.

F = {x ∈ R
n|(vj − x, vj) > (vj − x, vi) ∀ i, j}, (25)

F = {x ∈ R
n|(vi − x, vi − x) > (vi − x, vj − x) ∀ i, j}. (26)

F is a polytope bounded by hyperplanes that contain vi and are orthogonal to vi − vj , for all

i 6= j.

Theorem 3. Let A ⊂ R
n be an n-dimensional simplex with vertices v1, . . . , vn+1, F =

{x ∈ R
n|(vi − x, vi − x) > (vi − x, vj − x) ∀ i, j}. Then

V ol(F ) > n!V ol(A), (27)

and if the equality holds, then F tiles R
n.

Theorem 2 states that there is some neighborhood of the solution such that Algorithm 1 con-
verges with some rate. However, it does not say anything about the size of this neighborhood. The
following two theorems provide some information about this neighborhood.

Theorem 4. Let D = max
i,j

‖vi − vj‖. If at the current iteration Algorithm 1 is at t, x, where

x ∈ F , and

‖x‖ 6
7

16
√
4−D2

, (28)

and t 6 1, then ‖x′‖ 6 ‖x‖, where t′, x′ is the state of the algorithm at the next iteration.

Theorem 5. Let d = min
i,j

‖vi − vj‖, and d > 1. Then for the state t, x, where x ∈ int(F ), t 6 1,

at the next iteration ‖x′‖ < x. Consequently, x′ ∈ F .

Since for large n, all edges random simplex inscribed in a unit sphere almost surely have a length
greater than 1, the above theorem is almost surely applicable. In these cases, it is sufficient to have
‖x‖ < 0.5 at the initial iteration for Algorithm 1 to converge.

5. CONNECTING THE CHEBYSHEV CENTER OF A SIMPLEX
AND A PERTURBED SIMPLEX

The previous section describes the behavior of the algorithm in the case of B being a ball, and
A being a simplex that contains the center of its circumsphere. The solution to such a problem is
obvious—one just needs to inscribe the simplex in a sphere. Therefore, so far the statements given
in the previous chapter are useless in practice.

Theorem 2 describes a class of sets A such that their Chebyshev center can be found with
Algorithm 1. Those sets are described as “perturbed simplices”: A = conv((v1+C1)∪ . . .∪ (vn+1+
Cn+1)), where vj are points, Cj are r-strongly convex sets, and f is guaranteed to have n + 1
zeroes. One may hope that the behavior of Algorithm 1 for “perturbed” simplex should not be
very different from its behavior for a simplex, which was studied in the previous section.

Let B be a ball throughout this section. Obviously, in Theorem 2 one can make Cj ⊂ Br(0)
using translation, since Cj is r-strongly convex, therefore, contained in a ball of radius r. Let us
state a theorem about the set F , defined in the previous section:
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Theorem 6. Let B = B1(0), A = conv((v1 + C1) ∪ . . . ∪ (vn+1 + Cn+1)), and Cj are r-strongly

convex, as in Theorem 2. Let Cj ⊂ Br(0). F is the set of x ∈ R
n such that ft,x(p) = (x, p)−hA(p)

has n+1 minimums on the unit sphere. Let Ã be a simplex with vertices vj, Ã = conv(v1, . . . , vn+1).
Let F̃ be the set of x ∈ R

n, such that ft,x(p) = (x, p)− h
Ã
(p) has n+ 1 minimums on the unit

sphere. Then

F +Br/d(0) ⊃ F̃ , (29)

where d = min
i 6=j

‖vi − vj‖.
Remark: it is easy to see that a slightly stronger statement holds,

F +Bε(0) ⊃ F̃ , (30)

where

ε =

max
i,j

max
p∈Sn−1

(hCi
(p)− hCj

(p))

d
6

r

d
. (31)

For example, if all the sets Cj are the same, then F ⊃ F̃ .

The above theorem states that F , being the set of x such that Algorithm 1 can make it to the
next iteration, is at least not much smaller for the problems with perturbed simplices.

6. CONCLUSION

We approach the optimization problem (1). Algorithm 1 that solves the problem for a specific
class of sets A, B was suggested, implemented, and discussed. The algorithm performs several
iterations. At each iteration, it searches minimums of the “gap” between A and x + tB using
gradient descent. In practice, the algorithm converges very fast even for 100-dimensional problems,
showing a quadratic rate of convergence. However, to guarantee the presence of convergence,
additional requirements on A and B have to be satisfied. For theoretical reasons, the behavior of
the algorithm for the “simplex in a ball” problems was investigated. We introduced the set F of
such initial conditions that there exist n+ 1 minimums of ft,x, and thus, Algorithm 1 can make it
to the next iteration. Then, it was shown that if one slightly perturbs a simplex, F also changes
slightly (Theorem 6). The main theoretical results are Theorem 1 about the convergence rate of the
algorithm, Theorem 2 describing a class of problems that the algorithm is applicable to, Theorem 3
that bounds the volume of F and provides a nice result about tiling R

n, Theorems 4, 5 that describe
such initial conditions that the convergence of Algorithm 1 is guaranteed, and Theorem 6, which
gives a connection between the set F when A is a simplex, and when A is a perturbed simplex.
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APPENDIX

Proof of Lemma 2. The functions (x, p) and thB(p) are differentiable. It is sufficient to prove
that hA is differentiable at the minimums of ft,x.

Let p0 be a minimum of ft,x. hA is a convex function, and it has a subdifferential ∂hA. For the
sake of contradiction, suppose ∂hA(p0) has more than one element.
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For any ε > 0 there exists δ such that for any p ∈ Bδ(p0) the following inequality holds:

|ϕ(p)− ϕ(p0)− (g, p − p0)| < ε‖p− p0‖. (A.1)

For all y ∈ ∂hA(p0),

hA(p) > hA(p0) + (y, p− p0), (A.2)

−hA(p) + hA(p0) > (−y, p− p0). (A.3)

The equations (A.1) and (A.3) give us

ϕ(p)− ϕ(p0)− hA(p) + hA(p0) 6 ε‖p − p0‖+ (g, p − p0)− (y, p − p0), (A.4)

f(p)− f(p0) 6 ε‖p − p0‖+ (g − y, p− p0). (A.5)

Since ∂hA(p0) has more than one element, there is such y ∈ ∂hA(p0) that y 6= g. Then, at
p− p0 = δ y−g

‖y−g‖ ,

f(p)− f(p0) 6 εδ − δ‖g − y‖, (A.6)

which is negative for sufficiently small ε. This contradicts the fact that f has a minimum at p0.

Proof of Theorem 1. It is sufficient to prove the case x0 = 0 because other cases can be reduced
to this by a suitable translation. We will assume that x0 = 0. For p from some neighborhood U(p0j )
the following inequalities hold:

{
ft,x(p) = (x, p) + thB(p)− hA(p) > (x, p) + (t− t0)hB(p) + µ‖p− p0‖2,
ft,x(p) = (x, p) + thB(p)− hA(p) 6 (x, p) + (t− t0)hB(p) +M‖p− p0‖2.

(A.7)

Let p′ be a minimum of ft,x in U(p0j ). First, let us derive a bound for ‖p′ − p0j‖.





ft,x(p
′) = (x, p′) + thB(p

′)− hA(p
′) > (x, p′) + (t− t0)hB(p

′) + µ‖p′ − p0‖2,
ft,x(p

′) 6 min
p∈U(p0

j
)
{(x, p) + (t− t0)hB(p) +M‖p − p0‖2} 6 (x, p0j ) + (t− t0)hB(p

0
j ).

(A.8)

Then,

(x, p′) + (t− t0)hB(p
′) + µ‖p′ − p0‖2 6 ft,x(p

′) 6 (x, p0j ) + (t− t0)hB(p
0
j ), (A.9)

(x, p′) + (t− t0)hB(p
′) + µ‖p′ − p0‖2 6 (x, p0j ) + (t− t0)hB(p

0
j ). (A.10)

Which gives us

µ‖p′ − p0‖2 6 (x, p0j − p′) + (t− t0)(hB(p
0
j )− hB(p

′)). (A.11)

Using the Cauchy–Schwarz inequality and the definition of the gradient of a support function:

µ‖p′ − p0‖2 6 (x, p0j − p′) + (t− t0)(hB(p
0
j )− hB(p

′)) (A.12)

6 ‖x‖‖p′ − p0j‖+ |t− t0|‖∇hB(p
0
j)‖‖p′ − p0j‖(1 + o(1)). (A.13)

Then,

‖p′ − p0j‖ 6 Const(‖x‖+ |t− t0|) (A.14)
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for some constant Const, which does not depend on x and t in some neighborhood of (t0, x0). Now
we have a bound on the error ‖p′ − p0j‖.

For the state of the algorithm on the next iteration, t′, x′,

(x′, p′j) + t′hB(p
′
j)− hA(p

′
j) = 0 ∀j ∈ {1, . . . , n+ 1}, (A.15)

(x′, p′j) + (t′ − t0)hB(p
′
j) = hA(p

′
j)− t0hB(p

′
j). (A.16)

This is a system of linear equations for x′ and t′ − t0. Since for any fixed j, the right-hand side of
the equation is hA(p

′
j) − t0hB(p

′
j) = −f(p′j), the norm of the right-hand side in the entire system

is not greater than
√
n+ 1M‖p′j − p0j‖α 6 Const(‖x‖+ |t− t0|)α. The matrix of this system is not

degenerate if 0 ∈ conv({p′1, . . . , p′n+1}), which holds true if t and x are close enough to t0, x0. The
inverse matrix has a bounded norm for (p′1, . . . , p

′
n+1) from some neighborhood of (p01, . . . , p

0
n+1).

Thus, the following bound holds:

‖(t′ − t0, x′1 − x01, . . . , x
′
n − x0n)

T ‖ 6 Const(‖x‖+ |t− t0|)α (A.17)

6 Const‖(t− t0, x1 − x01, . . . , xn − x0n)
T ‖α, (A.18)

which completes the proof.

Proof of Theorem 2. It is sufficient to prove the statement for x0 = 0, t0 = 1.
1) Notice that (A ∩ ∂B) ⊂ ⋃

j
(vj + Cj).

Indeed, by Caratheodori’s theorem, A is a union of simplices with vertices in sets vj + Cj .
A simplex which is a subset of a ball can intersect the boundary of the ball only by its vertices.
So, every point from A ∩ ∂B belongs to vj + Cj for some j.

2) For each j, (vj + Cj) ∩ ∂B has at most one element.
By contradiction: if for some j there are distinct a, b ∈ (vj+Cj)∩∂B. LetM be the r-strongly
convex hull of {a, b}: M = strconvr({a, b}). Since the sets vj + Cj are strongly convex,

M ⊂ vj + Cj . (A.19)

Since a, b ∈ ∂B = ∂B1(0), and r < 1,

M ∩ (Rn \B) 6= ∅. (A.20)

Then,

(vj + Cj) ∩ (Rn \B) 6= ∅, (A.21)

which contradicts the fact that (vj + Cj) ⊂ B.
3) For each j, (vj + Cj) ∩ ∂B has exactly one element.

By the previous item, vj + Cj intersects ∂B by at most one point. By the condition of
the theorem, f has at least n+ 1 zeros, then A ∩ ∂B has at least n+ 1 elements. So
(v1 + C1) ∪ . . . ∪ (vn+1 + Cn+1) intersects ∂B by at least n+ 1 points. Thus, each set vj + Cj

intersects ∂B.
4) In some neighborhood of each zero of f , f has a quadratic upper bound.

Let p01, . . . , p
0
n+1 be zeroes of f . For the simplex S = conv({p01, . . . , p0n+1}) and a point p from

some neighborhood of p0j the following equality holds: hS(p) = (p, p0j) = 1− 1
2‖p−p0j‖2. Since

S ⊂ A, hA(p) > hS(p), which gives us the desired bound 1−hA(p) 6 1−hS(p) =
1
2‖p− p0j‖2.

5) In some neighborhood of each zero of f , f has a quadratic lower bound.
vj + Cj ⊂ Br((1 − r)p0j), consequently, A ⊃ conv(Br((1 − r)p01) ∪ . . . ∪ Br((1 − r)p0n+1) =
Br(0) + (1− r)conv({p01, . . . , p0n+1}). If A is a sum of a simplex and a ball, the desired bound
holds, then for the given A the bound holds as well.
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We have shown that all the conditions of Theorem 1 hold, with α = 2. Then, the quadratic
convergence of Algorithm 1 is present in this problem.

Proof of Theorem 3. Define a lattice Λ, spanned by vi − vn+1, 1 6 i 6 n:

Λ = {c1(v1 − vn+1) + . . .+ cn(vn − vn+1)|ci ∈ Z}. (A.22)

The volume of the unit cell of this lattice equals n!V ol(A).

Consider the Voronoi diagram for Λ. Let C be the cell of the Voronoi diagram that contains
zero.

C =

{
x ∈ R

n|(x, y) 6 1

2
(y, y) ∀ y ∈ Λ \ {0}

}
. (A.23)

It is easy to see that

F =

{
x ∈ R

n|(x, vi − vj) 6
1

2
(vi − vj , vi − vj) ∀ i, j

}
. (A.24)

Since vi − vj ∈ Λ, the set of linear constraints defining F is a subset of the set of linear constraints
defining C. Then C ⊂ F , and

V ol(F ) > n!V ol(A) (A.25)

follows immediately.

If V ol(F ) = V ol(C) = n!V ol(A), then F = C, and F tiles Rn, because C tiles Rn.

Proof of Theorem 6.

1) If for each j there exists such pj ∈ Sn−1 that for any i 6= j

hCj
(pj) + (vj , pj) > hCi

(pj) + (vi, pj), (A.26)

then x ∈ F . Indeed, each minimum of ft,x(p) corresponds to its own Cj (see Theorem 2,
item 3), and in order for Cj to have a minimum associated with it, it is enough to have
(x, pj)− hvj+Cj

(pj) 6 (x, pj)− hvi+Ci
(pj) for some pj, which is equivalent to (A.26).

2) Consider the previous item for pj =
vj−x

‖vj−x‖ . Then if for each j and any i 6= j

hCj
(vj − x) + (vj , vj − x) > hCi

(vj − x) + (vi, vj − x), (A.27)

then x ∈ F .
3)

0 6 hCj
(p) 6 r, (A.28)

since Cj ⊂ Br(0). This gives us
4) If for each j and i 6= j

(vj , vj − x) > (vi, vj − x) + r, (A.29)

then x ∈ F .
5) Compare:

{x ∈ R
n | (vi − vj , x)− (vi − vj, vj) > r} ⊂ F, (A.30)

{x ∈ R
n | (vi − vj , x)− (vi − vj, vj) > 0} = F̃ . (A.31)

If x ∈ F̃ , then x+ r
vi−vj

‖vi−vj‖2
∈ F . So,

F +Br/d(0) ⊃ F̃ , (A.32)

as claimed.
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